From PLI's Course Handbook

Open Source Software: Risks, Benefits & Practical Realities
in the Corporate Environment

#5141

10

SEVEN STEPS TO ADDRESSING
OPEN SOURCE ISSUES IN
SOFTWARE DEVELOPMENT

Stephen A. Mutkoski
Microsoft Corporation

Seven Steps to Addressing Open Source Issues in Software Development
Stephen Mutkoski

Intellectual Property & Licensing Group

Microsoft Corporation

© 2004 Microsoft Corporation

Whether you are in house counsel for a software company or a lawyer
representing clients who develop software, it is imperative that you understand the risks
that can arise when software developers download and incorporate open source software
into company products. This paper is intended to give a broad overview of some of the
steps that legal counsel can take to address these risks, including making sure your
company has a coherent policy in place to address these risks, that your company
employees understand the policy and that you have effective procedures or mechanisms
in place to address open source issues as they arise.!

1. Create an open source policy for your company

The most important thing you can do is to think through carefully some of the
common OSS issues or scenarios that will arise and determine in advance- in a well
reasoned fashion- how your company should address or respond to these common issues
or scenarios. By way of example, if a developer requests permission to download and
incorporate source code governed by the GPL into company products, how would you

! This paper assumes general familiarity with open source licensing issues and the common open source
licenses such as the GNU General Public License (GPL), Lesser General Public License (LGPL), Mozilla
Public License (MPL) and the Berkeley Software Distribution License (BSD).

235

respond? How would your response differ if the code were governed by the BSD
license? What if the request was for permission merely to download and install open
source applications for use within the company? It is important to point out early on that
there is likely no single “one-size-fits-all” open source policy; each company will likely
have somewhat different answers for these common open source questions. Each
company’s distinct business plan and licensing model (and possibly the company’s level
of aversion to uncertainty and risks) will dictate the appropriate response for that
company to each of these common open source issues.

Why every company needs an open source policy

There are two primary risks relating to open source software that we will focus on
here. On the one hand, there are the outbound licensing conditions or requirements that
come into play when one incorporates GPL or other similar “Copyleft”2 code into a
company product. By incorporating GPL code into one of its products, your company
would likely be required to release source code and grant broad IP licenses to the larger
work it creates. The GPL does, after all, condition its license grants on the licensee
making the same grants with respect to the larger work it creates. These “reciprocal”
grants (and access to the product’s source code) could be inconsistent with your
company’s existing or planned outbound licensing regime.

The second-- less appreciated-- risk relates to concerns about source code
“pedigree.” Code of unknown or dubious pedigree can transmit with it risks of third
party intellectual property claims. Some, perhaps much, open source code is written by a
loosely knit group of developers, often with little or no legal supervision to make sure
that infringing code or concepts are not being added by the contributors. Many
contributors to open source projects have day jobs at companies where they work on
related technologies. The employment agreements that are common in the technology
industry might well dictate that the “contributions” being made to the open source project
are actually owned by the employer. Because intellectual property claims are not
dependent on intent or knowledge, your company would be an infringer if unauthorized
third party intellectual property were transmitted in the open source code.

Factors to consider when drafting your company policy

The range of responses various companies might have to these risks results from
the fact that the intellectual property issues presented can look surprisingly different
viewed through the lenses of each individual company’s business plan and licensing
model. In other words, while one company might care tremendously that incorporation
of GPL code into one of its products would require company to make the source code to
the entire product available (and grant broad IP licenses to that entire product), another
company might be willing to live with these conditions imposed by the GPL. Whether
this is the case depends primarily on the extent to which the company derives revenue

2 “Copyleft says that anyone who redistributes the software, with or without changes, must pass along the
freedom to further copy and change it.... [A Copyleft license] gives everyone the rights to use, modify, and
redistribute the program's code or any program derived from it but only if the distribution terms are
unchanged.... Copyleft is a general concept; there are many ways to fill in the details.” See
http://www.gnu.org/licenses/licenses.htmi#WhatlsCopyleft

236

from licensing its products for a fee to users, because although the GPL does not rule out
the collection of a fee in connection with the distribution of a work, it does rule out
charging a license fee. Moreover, the broad IP license grants in the GPL (as well as the
requirement of providing source code) effectively destroy the ability of a company to
prevent others from obtaining, reproducing and redistributing the GPL work to others
without paying the licensing fee (in fact the GPL is intended to encourage such
redistribution). Even within a company there could be varied approaches depending on
the particular circumstances and the particular product. A company might have one set
of rules for incorporation of open source code into so-called “core” software assets where
intellectual property licenses generate significant revenues but different rules for non-
core software assets (where the company might not extract much in the way of licensing
revenues).

As a preliminary step to formulating your company’s open source software
policy, you should first consider your company business model, specifically your
outbound licensing plans for software products. You should consider which products the
company licenses for a fee to end users, how significantly those license fees contribute to
the company’s bottom line and whether reducing those licensing revenues (a likely result
if the products must be released under GPL terms) will significantly impact the company
business plan. If your company generates revenue primarily through consulting or
services work or the sale of hardware and your business plan does not include future
plans to generate revenues from licensing software, then you might not be averse to
including GPL code in company products (and thus broadly licensing your IP on a
royalty free basis), because you might not see a reduction in revenues. In fact, there may
be situations where giving away software and associated IP (and making it available in
source code form) might drive services revenues or sales of collateral company hardware
or software products, resulting in an overall increase in revenues. On the other hand, if
your company revenues are generated by both services/consulting work and software
licensing fees, you will need to consider the potential implications on licensing revenues
of particular products, particularly those “core” products that account for high
percentages of software licensing revenues. If your company revenues are generated
primarily by software license fees, you will likely want to be more conservative, carefully
scrutinizing each proposed instance of open source use to make sure that the significant
revenues from licensing fees are not jeopardized.

Some specific scenarios to consider

In drafting your company’s open source policy, you will want to consider a range
of potential scenarios that developers may bring to you. Obviously one of the most
important scenarios for you to consider is the one in which your developers ask to include
open source code in a company product. But you will also want to consider whether or
when (a) company code should be released under an open source license, (b) employees
should be allowed to participate in external “community” projects and (¢) your company
will set up external community projects for its products, including taking back in
community contributions.

237

Depending on your company business and licensing models, you might ultimately
make the decision to allow developers to include open source code into a particular
company product. But given the fact specific nature of each inquiry, the complexity of
open source licenses and the unsettled questions concerning what product architectures
might require compliance with certain open source license provisions, you will likely
want to have a policy that requires approval of each specific instance where open source
code is incorporated in a company product. For example, depending on the open source
license it might make a difference if the employee (a) cuts and pastes the code into
company product (b) statically links to the code or (¢) dynamically links to the code.
And, your developers might interpret an open source license quite differently from how
you would as legal counsel. Overall then, it might make sense to have a policy that
requires approval prior to any incorporation of open source code into a company product,
with each specific request being reviewed by an appropriate legal or business decision
maker.

The person or persons responsible for reviewing requests for permission to
incorporate open source code should be guided by a much more detailed policy
document. This document should reflect the company’s own business plan and should
point out acceptable and unacceptable requests. For instance, one company might decide
that its reliance on end user licensing of its products cuts against using any “Copyleft”
code, but that with appropriate review it can get comfortable with “pedigree” risks from
non-copyleft code. Another company, while generally restricting incorporation of GPL
licensed code might allow incorporation of code licensed under the Common Public
License (CPL) or Mozilla Public License (MPL) if certain product architecture
requirements are met (i.e., files are segregated). In the end, this detailed policy document
should reflect what you think each open source license means (when it comes into play,
what it requires you to do, etc.), what products your company needs to continue licensing
for a fee as well as how you feel about potential pedigree issues with open source code.

In addition to addressing open source code “incorporation” as discussed above,
you might want to include in your open source policy your company policy for internal
use of open source products. There are a number of useful development tools released
under open source licenses that your developers may want or need to use in developing
your products. The vast majority of these tools are used only in the development process
and they in no way are incorporated into the shipping product.® Your policy can either
explain that tools may be used without limitation provided they are not in whole or in part
incorporated into a company product, or set out an approved list of tools that you have
confirmed do not cause code to be incorporated into the product under development.

* A tool called Bison is one such exception. See http://www.gnu.org/licenses/gpl-fag.html (“Some
programs copy parts of themselves into the output for technical reasons--for example, Bison copies a
standard parser program into its output file. In such cases, the copied text in the output is covered by the
same license that covers it in the source code. Meanwhile, the part of the output which is derived from the
program'’s input inherits the copyright status of the input. As it happens, Bison can also be used to develop
non-free programs. This is because we decided to explicitly permit the use of the Bison standard parser
program in Bison output files without restriction. We made the decision because there were other tools
comparable to Bison which already permitted use for non-free programs.”)

238

You will also want to make sure that your policy addresses whether and when
employees may release company code under an open source license. Many developers
are actively involved in open source projects outside of work and may not understand the
implications of releasing company code under an open source license. If the code
includes valuable company intellectual property, the company may lose a competitive
advantage in the marketplace, since release under most open source licenses would result
in the grant of broad licenses to this intellectual property. Again, the specific instances
where a company might want to prohibit or allow the release of certain of its code under
an open source license will vary from company to company, but each instance should be
reviewed by an appropriate legal or business decision maker (namely one who has a solid
understanding of the company intellectual property policy and its licensing plans).

Whether you know it or not, your developers are likely involved in various
“community” projects and activities. Community is a broad term used to refer to
newsgroups, Sourceforge-like sites and other areas where developers “gather” and
collectively work on building code or solving more general problems. You should
consider whether these activities might expose your company to risks. For instance, if
you have a product that you license to end users, you probably want to restrict how your
developers who work on that product get involved in community projects that relate to
the same or similar functionality. If you impose no such restrictions, your developers
might wind up contributing valuable trade secrets, copyrights or patents to the
community project. Although you may want your employees to be involved in certain
aspects of the community, you likely do not want them to contribute all of the know how
and other intellectual property that makes your product superior to the similar open
source product. In addition, your developers might bring something back from the
community and incorporate it into one of your products and, as discussed above, not
realize the implications of doing this. Depending on your specific situation, you will
likely want your open source policy to explain the possible risks of participating in
community projects, whether or not on company time, and at a minimum require
approval for involvement in projects involving functionality that is similar to what the
employee develops at your company.

A final area that you should consider addressing in your open source policy
concerns when or whether your company will set up or “sponsor” community projects
and what your company will do with the fruits of such a project. While a community
project might seem like an obvious choice for one or more of your company products (to
harness free developer resources), there are a number of risks and administrative burdens
you should consider before you undertake such a project. For instance, just as there are
potential pedigree concerns with code your developers download from the internet, there
are such concerns with code added in a community process. You would want to get some
sense of who your contributors are, confirm they have intellectual property rights in the
contribution sufficient to allow you to incorporate it into your company product (the Free
Software Foundation in fact does just this) and possibly have them assign their rights in
such contributions to ease future administrative burdens.

239

2. Education, education and more education

Once you have formulated your company’s open source policy, it is essential not
just that you convey that policy to your employees, but that you give them a basic
understanding of the issues or concerns that open source software can raise. You should
consider how you can tailor this training to specific groups within the company. For
instance, developers, architects, managers, executives and legal personnel all have
different technical and legal backgrounds and would benefit from a well-tailored training.
Legal personnel might need a training that explains concepts such as dynamic and static
linking, or even some more basics of software development such as the distinction
between source and object code.

You should also consider how you can orient the tone of the training in such a
way as to encourage a partnership between you and the developers, who might be
inclined to resist what they see as legal meddling into the product development process.
Explaining the possible conflict that developers might create with the company’s
licensing plan by incorporating open source code into company products is one important
means of relaying to your developers the need to be on the look out for open source
issues.

Finally, open source training is one that is usually best done in person and with a
format and time allotment that allows for real time Q&A. The Q&A helps insure that
your audience gets the message you want to convey, but it can also help you adjust your
approach in future training sessions. You will likely find that your materials need to be
revised or expanded to cover certain frequently asked questions or hard to understand
concepts.

3. Create a mechanism for answering developer requests

As discussed above, it is quite likely that your open source policy will include at
least a few areas where developers are required to seek approval, for instance to
incorporate open source code into a company product, to contribute to a community
project, to release company code under an open source license or to set up a community
project. You should put a mechanism in place to make sure that these requests are taken
care of early in the development process to avoid last minute delays. If open source code
is introduced into your code base without approval and not located until just prior release,
it could hold up shipment of the product. It is normally easier to review and resolve these
issues early in the product development cycle before ship deadlines are rapidly
approaching.

You should also consider creating a request mechanism that helps route requests
to the appropriate decision maker and at least for some initial period consider centralizing
the task of reviewing and responding to such requests. Many companies find that during
the initial period after implementing and open source policy, it often makes sense to
consolidate authority for reviewing open source related requests into a centralized group

240

or committee, since a committee can draw upon each successive determination and insure
that the requests are resolved in a manner consistent with the company’s long term goals.

4. Carefully document open source use

To the extent you approve certain requests to incorporate open source code into
company products, you should make sure to carefully document that use. At a minimum
you should make sure your developers preserve any copyright notices in the code and
archive an electronic copy of the open source license attached to the code. It is also
helpful to have a system that connects all of this information together, for instance
accurately tracking precisely which code is subject to which open source license. Such a
system makes it easier to check that you are complying with open source license terms
and it makes you more agile if your product is part of an M&A transaction and you need
to quickly get a potential licensee or buyer information about the product’s open source
dependencies. You should also consider how you will flag and comply with any
obligations imposed by the open source license, for instance the obligation to carry
forward attribution or to provide source code.

5. Find your experts

Although the majority of open source requests will be ones that you and your
extended team can address, there will occasionally be questions that require outside legal
and technical expertise. Frequently these complex questions will be related to how
alternative product architectures might or might not bring certain license provisions into
play. Given the high stakes of these decisions, it makes sense to involve technical and
legal experts who routinely analyze these problems and can draw upon a wealth past
experiences. You will likely not realize that you need such outside expertise until it is
almost too late and you have product build deadlines or ship dates looming on the
horizon.

6. Tune up your M&A diligence practices

If you are concerned about what open source code your own developers might put
into one of your company products, you should be equally concerned about open source
code that might be present in code that your company acquires or licenses in. But, how
can you spot open source code in a potential acquisition target? Unfortunately at the
present there is no magic tool that you or the potential target can use to find open source
code in their products. Open source code is freely and widely available for download and
there is nothing inherently distinct or different about the way open source code is written.
Other than the copyright notices and references to license terms that the original authors
may have put in the comments of these files (for instance references to the GPL, MPL or
other Copyleft licenses), there is practically no way to identify open source code once it
is incorporated into a larger work. Even these notices are not a guaranteed way to
identify the presence or absence of open source code. The authors of code may fail to

241

include copyright or license notices in their source code files (this after all is a convention
and not a requirement of copyright law) and subsequent users of these files may strip out
any copyright or license notices that the original author included.

Accordingly, the main (and sometimes only) tool that you will have at your
disposal is the diligence process-- in other words the statements, representations and
warranties that a potential target will make to you about the presence or absence of open
source code in their products. To make the most of this process, you need to be very
specific in your questions and you need to make sure that your contact(s) at the potential
target have verified the responses to your questions with their code writing developers,
rather than relied on generalized statements made by managers. The following questions
provide a good starting point:

Question #1: Do any of the potential target’s products include code, modules,
utilities or libraries that are covered in whole or in part by a Copyleft license (i.e.,
a license that requires, as a condition of use, modification and/or distribution of
such software and/or other software combined and/or distributed with such
software be (a) disclosed or distributed in source code form; (b) licensed for the
purpose of making derivative works; or (c¢) redistributable at no charge)?

What specific code, modules, utilities or libraries?

Question #2: If yes, does the potential target distribute (i.e., ship) this product or
does it merely run internally on target’s servers)?

Since what date has the target shipped this product?

Has the potential target granted rights to (a) disclose or distribute this product in
source code form; (b) make derivative works of the product; or (c) redistribute the
product at no charge?

Question #3: Do any the products of the potential target include code, modules,
utilities or libraries that are covered in whole or in part by any other open source
license (i.e., a non-copyleft license)?

Question #4: Does the potential target have any policies in place to insure (1) that
open source code is not incorporated into its products without management
approval and (2) that such incorporation is carefully documented? What are these
policies? How does the target track open source license obligations and insure
that the target complies with these obligations?

7. Audit your products before you release them

As you near completion and release of your products, you should consider
performing an open source audit, to confirm the documented instances of open source use
and gain some assurances that developers did not incorporate additional open source code
without obtaining an approval. If you have kept good records of the instances where
open source incorporation was approved then the first part of your audit will be easy and

242

straightforward. You will also want to reconfirm that you have a plan in place to comply
with an open source license obligations, such as attribution or source code distribution
requirements.

You might want to take additional steps to insure that your records reflect all
instances of open source incorporation into the product. This typically involves a
meeting with the development team to confirm that each member of the team followed
the company open source policy.

Finally, you might want to consider using some type of automated tool to scan
your source and/or object code prior to release. There are currently two different types of
tools. The more basic tools merely perform basic text scans on file headers and
comments, searching for copyright strings or license names that could indicate the
possible presence of OSS code. It might surprise you to that many companies with well
thought out corporate OSS policies none-the-less locate instances of OSS in their
products by performing such rudimentary searches. Successfully locating OSS code with
these basic string search tools is however dependent on employees retaining (or copying
in) copyright notices or license terms. To the extent employees have removed copyright
notices (or to the extent there were no notices in code in the first place), this type of code
scanning tool will not locate instances of OSS code.

More sophisticated tools are now in the works that offer the promise to find
substantially more OSS code- including code that has no copyright notices or license
terms attached- by “fingerprinting” known OSS code bases and making intricate
comparisons to an internally developed code base.

243

Overview: Page 1 of 1

SAMPLE DILIGENCE QUESTIONNAIRE

Overview:

We would like to ask a few questions about incorporation of open source software (OSS) into your product and/or code base. The
questions are intended to differentiate between two general categories of OSS (1) so-called “Copyleft” code and (2) non-Copyleft
code.

The first category of code requires as a condition of use and distribution of the code that you disclose (all or a part of) the work
containing the licensed software in source code form and provide broad TP licenses to (all or part of) the work. Such licenses are
often described as being “viral” or “reciprocal” or “free.” The conditions imposed in these licenses conflict with the traditional
proprietary software business model that is based on binary only code distribution and granting of limited [P rights pursuant to an
End User License Agreement. Examples of Copyleft licenses include the General Public License (GPL), the Lesser General
Public License (LGPL) and the Moxzilla Public License (MPL).

The second category of code does not have the same source code and IP license conditions, and instead typically conditions use
and distribution of the code on providing attribution of the copyright holder. While these licenses do not conflict with the
traditional proprietary software business model (as Copyleft licenses do), they typically disclaim all warranties as to ownership
and non-infringement. Examples of non-Copyleft licenses include the Berkeley Software Distribution (BSD) or the Apache
licenses.

Questions:
1. Copyleft Code: Does your code base include code, modules, utilities or libraries that are covered in whole or in part by a
Copyleft license (i.e., a license that requires, as a condition of nse, modification and/or distribution of such software and/or other
software combined and/or distributed with such software be (a) disclosed or distributed in source code form; (b) licensed for the
purpose of making derivative works; or (c) redistributable at no charge)?
If you answered yes:
s Please identify what specific code, modules, utilities or libraries, what functionality they provide and what
particular license covers that code.
e Have you previously distributed (i.e., shipped) this product or does it merely run internally on your servers?
e Since when have you distributed this product?

2. Non-Copyleft Code: Does your code base include code, modules, utilities or libraries that are covered in whole or in part by any
other OSS license (i.e., a non-copyleft license)?
If you answered yes:
o Please identify what specific code, modules, utilities or libraries, what functionality they provide and what
particular license covers that code.
® Have you previously distributed (i.e., shipped) this product or does it merely run internally on your servers?
* Since when have you distributed this product?

developers? s there a process that employees must undertake to obtain management approval prior to incorporating OSS into
your code base? What procedures do you have to insure that such incorporation is carefully documented? What training do you
have to insure that developers are aware of these policies? When were these policies instituted?

245

dnoug) Buisusaoi] ¥ Aladolid |en)osjeiu|
uonelodion) YosouolN
ISOYIN|\ usydals

oAll0adslad 8SNOH u| uy
‘21em)Jos 924n0S uadp

247

TOSAWN :Buisusoi] [enq =

ung g JeH pay :|9poj uonduosgng =
suoileAlasqQ [9pOJN ssaulsng :xipuaddy ©

sanss| YR\ pue buioinosinQ =

sanss| Ajlunwwion) =

asua9||
SSO ue Japun apod Auedwod Buises|oy =

sanss| Juswdojansp [eusau| =
salpnig asen ¢

MBINIBAQ

248

249

P9 00|JSA0 Us}0 SI Ysu aaubipad spon =
Aiinbur yo-suo Buiwnsuod awny Aj@y si uojesodiodul spo) =
SOlIBUSDS OM] UBBM}aq ysinbuisip o] palinbal uoyg =
SuUOsso] ©
JOU S80p JIUNN :INdINO Ul J|9S) JO BWOS SOpN|OUl UoSIg :Sonss| =
ajnquisip o} sueid
Auedwoo jey} 1onpoud e Buidojaasp ui |00} Bunss) e JIUNN pue
‘10jesausb Jasied e ‘uosig asn 0} uoissiwiad sysanbal sadojoneqg =
OSSN S|00] |eulsiu|, Z# Olleuadss @

sjuawalinbal
asua9l| a|qissod pue Bupjul| 149 ‘. 8albipad, opoo gy :senss| =
Aieiqi| 749 e ul Suoiouny |BIaASS 0] Yul| pue apod pasuadl| Sy
JO saul| 000'G @)sed pue 1nod 0} uoissiwliad sjsenbal Jadojanaq =

.uonelodioou| 8pon), L# OLBUSDS ©

sonss| JuawdojaAa(] |eulalu|

uoljisodoud ||e sy 9zis auo jou S| Buisual| 804n0g =
SUOSS9T &
¢,899sU89|| 10} asua9l| ajeudoiddy =
¢1d9 Aq pejuelb syybu d| Jo doog =
¢,S19108S apeJ} JO Sso =
Sonss| ¢
asua2l| 8y} se 1495 oY) bunsebbns

‘asuadl| SSO ue Jepun apod Auedwo)) ases|ol
0} uoissiwiad sjsenbal Jadojans(] :0lIBUBOS ©

9SU92I7 SSO Uk Japun apo) Buises|ay

250

sysl oaibipad ajeulwis Aj@e|dwoo 0} g|gissodwil Bullunsuoo
SWl} SI Z# 01leusdS Joj ssao04d Buluaslos pue aAljessIUILPY =
auop jou si yo Buljjem/buiusaios Jadoud Ji 4 Auedwos
9100 8)NQIIJU0d PINOD JadojdaASp ey} 3|qISSOd ‘HNoIIP S ybisianQ
'L# OLIBUSIS Ul S9INQLIIUOD JSJO[DASP MOY JIWiI| 0} NOIIp Ao =
SuUossa] ©
suolnquiuog Jo salbipad, :senss| =
1onpoud jo asesjas Auedwiod
OJUI WY} ||04 pUB SUOIINGLIIUOD Ul Yoeq aye) 0} sjuem Jadojansp
:9p02 Auedwod ay} Ajipow pue aaoidwil ‘0} 31NQLIUOD O} SISYJ0 MO||e 0}
‘9p09 921nos Auedwod Jo ases|al 3y} YIM UOI}o3UU0D Ul 8)S AUUNwwod
paJjosuods-Auedwod e dn }as 0} uoissiwlad sjsanbal jadojensq *

Alunwwo) palosuodg-Auedwo) Buiysijgeisy z# oueusds ©
dl Auedwoos jo abeyear, :senss| =

198loud Ayunwiwod jeulslxe Bunsixs
ue (0} aynquiuoo “a°1) ajedoiped 0y uoissiwiad sisanbal Jadojpaeg ®

uonedioied Ajunwwo?)) |eula)xy L# OLeuads ©

sanss| Ajlunwwon

251

19b.e} woly seakoldwa Mau, Jo uonesnpy =

ash g uo saliljod
Auedwod pue sponpoud oyoads Uy asn SO N0 ases) o} ssaooud aouabijip as =

Ansnpui ssosoe saleA uoneonsiydos Jo [aas] »
saljuelieM SSO apn[oul pjnoys saiped piyl YiIm sjuswoslby =
'SUOSSeT ©

sso204d Bunumas Apsod Ajjenusiod ‘asuadll SSO ay) Yim Bulkidwoo
pue apoo SSO 8y} Buijind usamjag asoyd 0} padioy aq |IIM NOA 1By} Ysiy senss| =

sjonpoud sy Buidojonsp ul 8pod (1Sg pue 149 pasn sey jebie] ‘siesulbus
pue sjasse apod Buipnpoul ‘Auedwod aiemyos Buninboe sispisuod Auedwoy =

uonisinboy Auedwo?) z# oeusdsg ©

ssoo04d Bunumal Aj3sod Ajjenualod ‘asuadl] SSO ay) Yyim Buikidwoo

pue apo2 SSO ay} bulnd usamiag asoys 0} paaloy aq [|IM NoA Jey) YsIy senss| =
8pod 1d9 pue asg sepnjoul Aued pay ‘Jonpoad Auedwod

ojul uonesodiooul 1oj Jusuodwod alemyos ajum o} Aued plaiyy saay Auedwo) =

dlIH JOJ MIOAN L# OlleUsdS ©

Sanss| yYRIA pue buloinosinp

252

SJabuljul#] 621/BIM/qnd/Wod 18 UA||I910 MMM//-dIY
. 9INs w,| ‘sispjoyaleys
pue SIaumo s} Joj Juswow Addey e jou
--UOl|[IW 9 O SJejjop uoljjiw /9 WOod) UMOP
Juam Auedw o9 jey) Jo aol1id ay) ‘qnsal e sy
"UMO JIay] se JJo passed pey siswwelboid
SolWeuAq Uiyl 1eyl epoo 82Jn0sS
uado Jo sajdwexa Q0| 0} 08 pejeaAal 8apo9o
S}I JO uoljeulwexs [enuew bBueisuied

e ‘SolweuAq quiyl padinboe Ng| usypp, ©

suoleoidw| uonenje/

253

Uy SASYUIFLOL [P 29/%1/01/S00Z/oWOy/od SaqI0) MMM][:d1Y
. sltalddns Biq s3I Jo auo pue uoijepuno4

9Jem}Jog 9344 ay} usaamjaq jybnes si 09s1H) mou 0g
"woopeouag wod} sAnq sAsyui jeys sdiys uo sapisad
9po09 pajndsip ay) asnesaq ‘Aad11} UBAD S,)I ‘osed
§,09s1Q U] "sAsyui Joj uoljjiw ocm% pred yoiym ‘oasiy
94,n0A JiI smau jealb JoN “3onpoud InoA jo jjoyoouy e
9yew mou ued sauoAue sueaw apod ey} bulysiignd i
UDA3--PaJEaID BA,NOA , SYIOM dAlRALIBP,, AU 10} 9p09
a9y} osje Inq ‘@pod 149 9y} }snl jou puy "apod 924nos
S,91eM}JOS 9y} ajnquisip osje }snw hoA ‘yonpoud

e Ul 31eM})OS 145 9InquISIp hoA JI ‘asuadl| ay} Japufn
"L66] Ul pajeald uojjepuno alem}jos aal4 ay}

yaym ‘(do) asuaai alignd [esauan NND 8Yj Jspun

pajnquisip sl 1a)nol 8y} ul alem}os Xnuiq ayl,, ©

asJioway staAng

254

suoljeAlasqQ |9POJAN ssaulisng
XIpuaddy

255

1d9
oY) Jopun papiwiad wsiueyosw Aoelid, oN =

1onpoud InoA Jo saidod Buljias woly sioinguisip
(¢) 1o saldoo jeuonippe Buijjeisul pue
Buew wouj siosn pud (|) 10111S81 JOUUBD NOA =

Adoo sl 8y} 1o}
99} e Bbuibieyd 1o} smojje Ajuo AjpAnoays 1do =

|opow Buisua|
Jasn pus jeuollipel) sapnjoald 149 sy ¢
SIEM}JOS 1dD Yim o3j
Ado9 Jad e Buljelauss) :wa|gqoid)

56

dopjsep
JOU ‘193Jew JaAies 8s1udIalud S| SNO0) HY 8100 =

H¥ wouj pyoddns yum xnuiT JO UOISIBA
Jawnsuod s,Hy sulejuiew/sdojanap mou bBlo'eiopse =

SuUOSse ¢

1eH pay Se pajayiew 8g Jou pjnoo alemyos ey}
pue ‘syJew Jayjo pue suodl ‘sobo| HY ||e eAowal
0] pey sJonquisip pawie|) :Me| JJewspeld) yjum
sloinquysip/sialdod ying dojs 0} pajdwane HY ¢
$01$101saD jojes
paxoq 8)8|dwod Ang udAa 10 831} 10) PROJUMOP
ued noA uaym 08¢ J10J 0°'6 HY ANg |Im OYpn ©

sHoye dopisep s jeH pay

257

99) 9SUDI| 8JeM)0S B 8)I| 10| B SHOO|
1ey) e} Adoo Jad, ani@oal 0] Jolnguisip so|geuy ©
paljipow sI 8pod 149 JI pajeulwls] =
VN3 |euonipedy Jo |eaidA) asnejo Jipne sapnjou| =
99} Janss Jad Jo juswAed saiinboy =
sjuswadsueyua
aouewJsopad pue AlLNnoss Jo weal)s Buiobuo
0]} 99sSUa92I| S9|)juUs Jey) Juswaalby uondlosgng ©

|9po|\ uoiduosqgng 1eH pay ay |

258

|opow uodLosgns JO SOILOU0I3 8y) Jnoge
6o|q ysijgnd Ajjusoas seslojdwas ung ¢
99} Jasn Jad

|lenuue 1oj AjjesiweuAp, 10 88} awl}-auo
10} WJoy 2Ne)S, Ul Jayye panguisip sare

wa)sAg dopjsa eAefr s.ung

259

749 9yj uey} Jayjo asuaol| Aue Japun apoo jey)
ases|al ‘9sIn0d JO ‘Jouued 9pod 149 Jo Juaidioal sy =

S9SUa2I| SAISN|OX8-UOU shoJawnu
Japun apoo s}l eses|al ued Japjoy ybuAdoo ay| =

Jap|oy ybuAdoo sy Ajuo Ajlensn =
£ 9P02 BSUBJI| [BNP UBD OYAA €
Aiejaiidoud
1ayjo ay) pue 82inos uado Sl asuadl| suo Ajlensn =

SOSUa2I| JUaJalIp
OM] Japun aseq apo9 Je[iwis Jo swes e Buisesg|oy =

S S1HIEBUYA ©

Buisuaol jeng

260

261

(GZe=PIsyeHE=0|FSMON=SWEU,dUd SSNPOW/ZIq GjO AWM. Oy 28s) UO.::U@-— m_ mwcmo__
|e1oJawiwiod uaym noge JOSAN AQ SjuswILIOD JuSoSY =
Buisual| |[enp Jo Ajjin Jwi| 8oeds 1onpoud
ul uoiyadwod Jo ainjeu pue 1onpoud Jo Alxajdwon =
¢owoy je siyy Ay juoq ¢
sladojansp TOSA poob ay) sauy TOSAN =

uoddns pue sadiAlas Jueoiiubis
'X0q 8y} J0 IO s||eisul Jey) Jonpoud e jusl TOSAIN =

UOISIOA [Ny, Y] JO) Spea| alelausb
0} Ajunpuoddo ue ‘|oo} buneylew jealb e Ajjeas s} =

&SHIoM) AYp ©

awayog buisuaol] jenq s, TOSAN

